\(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [510]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 99 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (A-i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}} \]

[Out]

-4*(-1)^(1/4)*a^2*(A-I*B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d+2*I*B*(I*a^2+a^2*cot(d*x+c))/d/cot(d*x+c)^(1/
2)-2*a^2*(A+I*B)*cot(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3662, 3674, 3673, 3614, 214} \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (A-i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}} \]

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-4*(-1)^(1/4)*a^2*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a^2*(A + I*B)*Sqrt[Cot[c + d*x]])/
d + ((2*I)*B*(I*a^2 + a^2*Cot[c + d*x]))/(d*Sqrt[Cot[c + d*x]])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3614

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2*(c^2/f), S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3662

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3674

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c
 + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m
 - 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && E
qQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(i a+a \cot (c+d x))^2 (B+A \cot (c+d x))}{\cot ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}+2 \int \frac {(i a+a \cot (c+d x)) \left (\frac {1}{2} a (i A+3 B)+\frac {1}{2} a (A+i B) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}} \, dx \\ & = -\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}+2 \int \frac {-a^2 (A-i B)+a^2 (i A+B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx \\ & = -\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}+\frac {\left (4 a^4 (A-i B)^2\right ) \text {Subst}\left (\int \frac {1}{a^2 (A-i B)+a^2 (i A+B) x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d} \\ & = -\frac {4 \sqrt [4]{-1} a^2 (A-i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.57 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.70 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {2 a^2 \sqrt {\cot (c+d x)} \left (A+2 \sqrt [4]{-1} (i A+B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)}+B \tan (c+d x)\right )}{d} \]

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a^2*Sqrt[Cot[c + d*x]]*(A + 2*(-1)^(1/4)*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]*Sqrt[Tan[c + d*x]
] + B*Tan[c + d*x]))/d

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 217 vs. \(2 (85 ) = 170\).

Time = 0.39 (sec) , antiderivative size = 218, normalized size of antiderivative = 2.20

method result size
derivativedivides \(-\frac {a^{2} \left (2 A \sqrt {\cot \left (d x +c \right )}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i A +2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {2 B}{\sqrt {\cot \left (d x +c \right )}}\right )}{d}\) \(218\)
default \(-\frac {a^{2} \left (2 A \sqrt {\cot \left (d x +c \right )}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i A +2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {2 B}{\sqrt {\cot \left (d x +c \right )}}\right )}{d}\) \(218\)

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-a^2/d*(2*A*cot(d*x+c)^(1/2)+1/4*(-2*A+2*I*B)*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c
)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/4*(
2*I*A+2*B)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*arct
an(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+2*B/cot(d*x+c)^(1/2))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 385 vs. \(2 (81) = 162\).

Time = 0.25 (sec) , antiderivative size = 385, normalized size of antiderivative = 3.89 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {\sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (A + i \, B\right )} a^{2}\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \]

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

(sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(2*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c)
- sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^
(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) - sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(d*e
^(2*I*d*x + 2*I*c) + d)*log(2*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(-I
*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c
)/((-I*A - B)*a^2)) - 2*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c) + (A + I*B)*a^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=- a^{2} \left (\int \left (- A \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int A \tan ^{2}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- B \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int B \tan ^{3}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- 2 i A \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int \left (- 2 i B \tan ^{2}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx\right ) \]

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

-a**2*(Integral(-A*cot(c + d*x)**(3/2), x) + Integral(A*tan(c + d*x)**2*cot(c + d*x)**(3/2), x) + Integral(-B*
tan(c + d*x)*cot(c + d*x)**(3/2), x) + Integral(B*tan(c + d*x)**3*cot(c + d*x)**(3/2), x) + Integral(-2*I*A*ta
n(c + d*x)*cot(c + d*x)**(3/2), x) + Integral(-2*I*B*tan(c + d*x)**2*cot(c + d*x)**(3/2), x))

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (81) = 162\).

Time = 0.32 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.76 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \, B a^{2} \sqrt {\tan \left (d x + c\right )} - {\left (2 \, \sqrt {2} {\left (-\left (i - 1\right ) \, A - \left (i + 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i - 1\right ) \, A - \left (i + 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{2} + \frac {4 \, A a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{2 \, d} \]

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(4*B*a^2*sqrt(tan(d*x + c)) - (2*sqrt(2)*(-(I - 1)*A - (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(ta
n(d*x + c)))) + 2*sqrt(2)*(-(I - 1)*A - (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqr
t(2)*(-(I + 1)*A + (I - 1)*B)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I
- 1)*B)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a^2 + 4*A*a^2/sqrt(tan(d*x + c)))/d

Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2 \,d x \]

[In]

int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2,x)

[Out]

int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2, x)